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ABSTRACT
Successful online communities (e.g., Wikipedia, Yelp, and
StackOverflow) can produce valuable content. However,
many communities fail in their initial stages. Starting an on-
line community is challenging because there is not enough
content to attract a critical mass of active members. This
paper examines methods for addressing this cold-start prob-
lem in datamining-bootstrappable communities by attract-
ing non-members to contribute to the community. We make
four contributions: 1) we characterize a set of communi-
ties that are “datamining-bootstrappable” and define the boot-
strapping problem in terms of decision-theoretic optimiza-
tion, 2) we estimate the model parameters in a case study
involving the Open AI Resources website, 3) we demonstrate
that non-members’ predicted interest levels and request de-
sign are important features that can significantly affect the
contribution rate, and 4) we ran a simulation experiment us-
ing data generated with the learned parameters and show that
our decision-theoretic optimization algorithm can generate as
much community utility when bootstrapping the community
as our strongest baseline while issuing only 55% as many
contribution requests.
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INTRODUCTION
The Internet has spawned communities that create extraordi-
nary resources. For example, Wikipedia’s 23 million users
have created over 4 million English articles, a resource over
100 times larger than any other encyclopedia. Similarly,
StackOverflow has become a top resource for programmers
with 14 million answers to 8.5 million questions, while Yelp
users generated more than 67 million reviews.1

In reality, however, most online communities fail. For exam-
ple, thousands of open source projects have been created on
SourceForge, but only 10% have three or more members [24].
Furthermore, more than 50% of email-based groups received
no messages during a four-month study period [6]. Since net-
work effects sustain successful communities, the key chal-
lenge for designers is to kindle initial community activity that
leads to a tipping point [13, Section 17.3].

Previous research has focused on methods for encouraging
existing community members to contribute additional con-
tent. For example, SuggestBot used the edit history of
Wikipedia editors to recommend articles for them to edit [9].
Beenen et al. conducted an experiment on MovieLens [10]
and showed that designing requests based on social psychol-
ogy theories can better motivate users to contribute [3]. Burke
et al. [5] show that the community can encourage contribu-
tions from newcomers by showing the contributions of their
friends. While these results provide insights on how to cause
existing community members to increase their activity, they
do not address the community “cold-start” problem. With-
out enough user-contributed content to attract a critical mass,
there might never be enough value to recruit initial members
to join the community [24].

This paper examines methods for solving the cold start prob-
lem by bootstrapping community content from the contri-
butions of non-members. Several challenges make this a
difficult problem. First, since the community doesn’t have
an activity log for non-members, it is hard to model their
interests and recommend tasks accordingly. Second, non-
members have no existing commitment to the community, so

1Statistics gathered in December, 2014.



they might not be inclined to make a contribution; it is unclear
which social psychology theory one could use to encourage
contributions in this case. Finally, there are a huge number of
possible non-members and many candidate tasks to suggest;
determining which requests should be sent to which users rep-
resents a combinatorial optimization problem.

Specifically, we identify a class of communities, which we
call datamining bootstrappable, where an external resource
provides a means of identifying potential members and esti-
mating their interests and expertise. For these communities,
we define the bootstrapping process as a decision-theoretic
optimization problem. Previous research has shown decision-
theoretic optimization is useful in similar social computing
contexts such as crowdsourcing [11]. Applying the decision-
theoretic framework to model the bootstrapping problem al-
lows us to estimate the utility of different operations and find
a set of operations that are near optimal for the community.

In addition, we conducted a field experiment on Open AI Re-
sources (Open AIR)2, a website which launched in July 2014,
three months before our study. In collaboration with the Allen
Institute of Artificial Intelligence (AI2)3, we were allowed to
access the user data of the site. This provided us a unique
opportunity to study the community bootstrapping problem
because Open AIR hadn’t accumulated much reputation or
user-generated content when we conducted our study.

By text-mining information from the Google Scholar citation
graph and linking to author homepages, we identified indi-
viduals who might be willing to join the Open AIR commu-
nity. We considered a range of strategies to get these individ-
uals involved and measured their response rates. The results
from these experiments inform the parameters of a decision-
theoretic model that can control the community bootstrapping
operation. Our study is an initial step toward building an au-
tomatic system that can bootstrap the contents of online com-
munities. In summary, our paper makes the following contri-
butions:

1. We characterize a class of online communities, which we
call “datamining bootstrappable communities,” where an
external resource provides a means of identifying potential
members and estimating their interests and expertise. We
then define the problem of efficiently bootstrapping such
a community in terms of decision-theoretic optimization,
and propose a greedy algorithm that efficiently solves this
problem with performance guarantees.

2. Using the Open AI Resources community as a case study,
we identify a set of informative, text-minable features and
estimate the probabilities that parameterize the actions in
our model.

3. We demonstrate that request design, such as the foot-in-
the-door technique [16], and the estimated level of interest
of non-members are important features in the model that
can significantly affect the probability of contribution.

2Open AI Resources, http://airesources.org/, is an on-
line community that allows users to comment and discuss Artificial
Intelligence (AI) related open-source datasets and software.
3http://www.allenai.org/

4. We ran an experiment using synthetic data generated with
parameters learned from the real data we collected to
show that our decision-theoretic optimization algorithm
can achieve comparable utility for bootstrapping online
communities while issuing only 55% as many requests,
compared to the strongest baseline.

RELATED WORK

Starting New Online Communities
Online communities are virtual spaces where people can in-
teract with each other. Many new online communities fail
because they are unable to carve out a useful niche, to pro-
vide enough value to accrete a community, or because they
lose to competition from other communities [24].

There are several ways to help a community reach critical
mass. One popular method is to leverage existing members
to recruit new members. Previous research has shown that a
person is more likely to join a community if he or she has
friends that are already members [2]. Companies, such as
Dropbox, exploit this principle by providing incentives for
users to refer their friends [24].

Bootstrapping the content of online communities is a com-
plementary approach to the cold-start problem and especially
useful when resulting content is long lived. Seeded content
can increase the utility for initial members to join the com-
munity [24]. Therefore, many online communities bootstrap
by copying content from 3rd parties. For example, Movie-
Lens imported a database of ratings from another movie rat-
ing website (EachMovie.com), which was no longer opera-
tional. Resnick et al. [28] show that using paid staff to pre-
populate the forum made it more attractive for other people to
post to and read the board. Seeded content not only increases
the utility of users, encouraging them to join the community,
but also can be used to direct the behavior of the new users,
encouraging them to contribute similar content [32].

Intelligent Task Routing in Online Communities
To make an online community thrive, the community de-
signer needs to find ways to encourage contributions from its
members. One approach, called intelligent task routing, mod-
els each member’s interests, determines a task of potential in-
terest, and sends them a personalized request [8]. As one ex-
ample, Cosley et al. [9] utilized the edit history of Wikipedia
users to model their interests. Their system used informa-
tion retrieval and collaborative filtering techniques to suggest
tasks, significantly increasing the contribution rate. Another
approach utilized the rating history of MovieLens users to
find those whose ratings differ the most. Their system used
this information to send personalized suggestions encourag-
ing users to reply to forum posts of users with opposite opin-
ions; this significantly increased the reply rate [20].

These exciting results show that intelligent task routing can
be used to encourage community members to contribute ad-
ditional content. However, it is not clear whether one can
use intelligent task routing to bootstrap content from non-
members, who have not generated activity logs that help with
targeting.



Encouraging Contribution Using Request Design
Research in social psychology has shown social influence
or persuasive techniques can be used to make people more
likely to comply with requests [7]. Since the success of on-
line communities relies heavily on the contributions of com-
munity members, many studies have been done to examine
how request design can be used to encourage member con-
tributions [24]. For instance, Burke et al. [4] show that ask-
ing more specific questions can increase the response rate by
50%. Also, using the social psychology theory of social loaf-
ing, Beenen et al. [3] show that requests stressing the unique-
ness of the member’s contribution significantly increased the
contribution rate. Moreover, Lopez and Brusilovsky [25] sug-
gest that the system should adapt the design based on user de-
mographics. All these studies focus on designing requests to
get contributions from community members. Users that have
not yet committed to the community might be less likely to
accept the requests because they are less invested in the com-
munity. Therefore, we might need to find another theory in
social psychology to motivate request designs that are more
suitable for encouraging contributions from non-members.

Research has shown that people are more likely to respond
to a large request after they have accepted a smaller request
because they want to maintain the consistency of their self-
perception [7]. Therefore, one compliance technique that is
often used in industry is to hide the large request and present
the smaller request to the recipients first, a method called the
“foot-in-the-door technique” [16]. Gueguen [19] showed that
this method is not only useful in a face-to-face scenario, but
can also be used in computer-mediated communication (e.g.,
email). However, to the best of our knowledge, no researchers
have investigated whether an online community could use the
foot-in-the-door technique to bootstrap contributions.

DECISION-THEORETIC COMMUNITY BOOTSTRAPPING
Background
Numerous researchers have applied decision theory to con-
trol interface behavior. For example, the BUSYBODY system
mediates incoming notifications using a decision-theoretic
model of the expected cost of an interruption, which is com-
puted in terms of the user’s activity history, location, time of
day, number of companions, and conversational status [21].
LINEDRIVE illustrates driving directions using optimization
to find the optimal balance between readability and fidelity to
the original shapes and lengths of road segments [1]. SUP-
PLE [17] renders interfaces using decision theory to optimize
the ease of a user’s expected behavior. Researchers have also
used decision theory to control social interactions, especially
for the specific application of optimizing crowdsourced work-
flows [11, 23, 33]. Our model of community bootstrapping,
described in the next section, builds on this seminal work.

Applicable Communities
We start by specifying a class of online communities where
our bootstrapping methods are appropriate and formally de-
fine the problem of eliciting contributions. Since the very
notion of community is amorphous, we assume that there is
a set of humans H who are potentially willing to make con-
tributions C to different tasks T . For example, for Yelp, T

might be the set of restaurants, and C could be a contributed
review. For AirBnB, there might be a single task (list a house)
and each contribution would correspond to a rental property.
We note that many communities have complex (two-sided)
market dynamics [29], which we are ignoring; however, from
a practical point of view, a single side tends to dominate
most markets. For example, AirBnB focused on sellers, since
their contributions (available rental inventory) were durable
(led to repeated transactions); renters came easily. Similarly,
Wikipedia was bootstrapped with an early focus on authors,
even though the community would fail without readers as
well.

We say a community is potentially datamining-
bootstrappable if there are mechanisms, likely using
external websites or similar resources, for satisfying the
following conditions:
1. Identifying the humans who are potentially interested in

a given task, and estimating the probability that they will
contribute.

2. Sending a request to a those humans (e.g., via a data-mined
email address or other communication channel).

3. Estimating the quality of their contribution.
If these conditions hold, our method is applicable. How-
ever, we caution that these conditions don’t guarantee that our
method will bring the community to the tipping point. This
depends on the specific parameters, e.g., number of humans,
response rate, and actual utility of contributions, including
their durability.

Request Model
Since we are targeting non-members who are not committed
to the community, we assume that the community can send,
at most, one contribution request to each human. In addition,
since the request design greatly affects the response rate, a
system can explore different requests in the design space D.
Thus the space of possible requests is R = H×T ×D. Should
a request result in a contribution, the quality of that contribu-
tion will come from a set of possible qualities Q. Our ob-
jective is to issue the set of requests R ⊆ R with maximal
expected utility, while satisfying the constraint that no human
is asked to do more than one task. Letting Rh ⊆ R denote the
subset of requests given to human h, this constraint requires
∀h, |Rh| ≤ 1.

Probability and Quality of Contributions
The expected utility of a set of requests is defined in terms
of the probability of the humans responding to the appeal
and the utility of the resulting contributions. As discussed
in the background section, previous work has shown that the
probability of a request being honored is a function of two
key factors: the human’s preexisting interest in task t, which
we denote ih,t, and the request design d [3, 8, 9]. There-
fore, we model the probability that human h will contribute
to task t as P(ch,t | d, ih,t). Similarly, we condition the quality
of a contribution on the human and their interest in the task:
P(qh,t | h, ih,t).

In order to apply our model to a specific domain, one needs
to specify a set of designs and a way of estimating interest



levels and then measure the conditional probabilities. In the
Experiments section we show how this may be done for our
case-study domain, the Open AIR website. For example, our
experiments show that if an author has written a paper citing
a resource, then this connotes a significantly higher level of
interest and increased contribution rate (e.g., see Table 3).

The Utility of Contributions
In general, it is extremely difficult to estimate the quality of
a given contribution [22]. As a result it is common to as-
sume (all other things being equal) that more contributions
are generally better than fewer. For example, Amazon emails
all purchasers to solicit a review. This intuition can be formal-
ized as monotonicity: Let A, B and N be sets of contributions.
A utility function, U : 2N → R, is monotone if for every
A ⊆ B ⊆ N,U(A) ≤ U(B).

Furthermore, some contributions are more valuable than oth-
ers. For example, the first review of an open-source code
library is probably more useful than the 100th. In general,
the marginal value of a contribution to a task is smaller when
the task has already received other contributions. This “di-
minishing returns” property is captured by the notion of sub-
modularity. More precisely, a utility function is submodular
if for every A ⊆ B ⊆ N and e ∈ N : f (A ∪ {e}) − f (A) ≥
f (B ∪ {e}) − f (B) [27].

For example, one possible monotone submodular utility func-
tion can be defined in terms of the utility of the contributions
to task t as Ut(ct) = α log

[
β
∑

ch,t∈ct fq(ch,t)
]
, where α and β

are constants, and fq is a measure of the quality (e.g., the
length) of contribution ch,t made to task t. But this is just an
example. For the rest of the paper, we assume that the util-
ity provided by a set of contributions to task t is a monotone
submodular function Ut. For simplicity, we further assume
that the system’s overall utility is a linear sum of the utili-
ties achieved on each task. This approximation is common
practice [31, Section 16.4.2] and makes intuitive sense. For
example, the utility Yelp receives for the reviews of restaurant
A are roughly additive with those of restaurant B.4 We seek to
send out the following set of requests, which maximizes the
total expected utility E[U] = E[

∑
t∈T Ut]:

R = arg max
R∈2R

∑
t∈T

∑
Qt∈2Rt

P(φc(Qt,Rt))∑
qt∈|Q|

|Qt |

P(φq(qt))Ut(< Qt,qt >), (1)

where R is the set of all possible requests, Rt ⊆ R is the set
of requests for task t, φc(Qt,Rt) denotes the event where Rt
requests are made but only Qt actually result in contributions,
and φq(qt) denotes the event where each of the requests in
Qt results in a contribution with a quality from Q, the set
of possible contribution qualities. The probability of these
events are defined as

P(φc(Qt,Rt)) =
∏

<h,t,d>∈Qt

P(ch,t | d, ih,t)
∏

<h,t,d>∈(Rt−Qt)

1 − P(ch,t | d, ih,t)

4One might argue that diminishing returns might apply across tasks
as well as within tasks; we hope to consider this and other elabora-
tions in future work.

and

P(φq(qt)) =
∏

<h,t,d>∈Qt

P(qh,t | h, ih,t).

Recall also that R must satisfy the constraint that ∀h, |Rh| ≤ 1.

Solving the Optimization Problem
Although there are various utility functions community de-
signers can choose from, in a realistic setting, one needs to
consider that the utility of each contribution depends on the
contributions from other people. For instance, the utility of an
additional contribution to a task might decrease as the num-
ber of contributions to that task increases. Therefore, to find
the solution to this optimization problem, the system needs to
enumerate all the possible allocations of the requests. How-
ever, this creates |T ||H| possible allocations. If the number of
humans or tasks is reasonably large (e.g., in the hundreds),
then the search space will be intractable. We must therefore
consider approximate solutions.

While many methods for heuristic search have been proposed,
few offer performance guarantees. However, the submodular
nature of the utility function allows us to closely approximate
the optimal value with the following method. Algorithm 1
first computes the expected utilities for all possible requests.
Then, the system sends the request with the highest expected
utility. Once the system assigns one human to a task, it ad-
justs the expected utilities for the requests of that task and all
the unassigned humans based on the expected contributions
of the task. By iterating this process until all humans in H
are assigned, the system can make sure the community has
requests with the highest expected utility at each point when
a partial assignment is made.

Input :H , T , P(ch,t | d, ih,t), P(qh,t | h, ih,t) ∀ < h, t, d >∈ R
Output: R
Compute the initial expected utilities for all possible requests
rh,t,d∗ ∀h ∈ H ∀t ∈ T , where d∗ = arg maxd P(ch,t |d, ih,t);
Initialize R← ∅;
while There is a human h ∈ H with no assigned task do

Find the request rh∗,t∗,d∗ with highest expected utility;
Add rh∗,t∗,d∗ to R;
Mark h∗ as assigned;
Recalculate the expected utility for the requests rh,t∗,d∗

for every unassigned human h ∈ H ;
end
Algorithm 1: A decision-theoretic approximation algorithm
for issuing bootstrapping requests.

Performance Guarantee
As we now show, our assumption that Ut is monotone sub-
modular guarantees that our solutions will be good. Since
each outcome is associated with a nonnegative probability
and monotone submodular functions are closed under non-
negative linear combination, the expected utility of a set of



Figure 1. An example Open AI Resources (Open AIR) interface of an AI
resource. The interface presents the basic information of the resource
(e.g., a summary of the resource and its main contributor) and the com-
ments of previous users. The users can update the entry or leave a com-
ment by clicking the buttons on the interface.

requests R (Equation 1) is also monotone submodular.5 This
enables us to provide the following optimality guarantee for
our algorithm.

THEOREM 1. Given the constraint that at most one re-
quest may be sent to any potential contributor, Algorithm 1
obtains at least 1

2 of the total achievable expected utility.
PROOF. The constraint that each human receive at most

one task is naturally encoded as a matroid constraint on the
set of total possible requests. Fisher et al. [15] show that sub-
ject to a matroid constraint, Algorithm 1 achieves at least this
fraction of the optimal value for monotone submodular func-
tions.

Note that we have assumed that utility functions are defined
on a per-task basis, so Algorithm 1 needs only recompute at
most |H| values in each step, leading to a worst-case O(|H|2)
performance.6

APPLYING THE MODEL TO OPEN AIR
So far, our request-assignment model has been abstract and
hence applicable to many different communities. To make
it concrete, we consider Open AIR (Figure 1), an online

5Moreover, this function is adaptive monotone submodular [18],
since we assume contribution probabilities are independent. While
this means that an adaptive version of Algorithm 1 is also near-
optimal, adaptive requests are impractical due to delays between the
request and contribution; we do not consider this setting further in
this paper.
6Computing utilities involves taking an expectation over the possi-
ble outcomes for the requests assigned to a task. We assume that the
probability and value of human contributions come from a bounded
number of classes (Table 3), which enables speedy utility computa-
tions.

community hosted by the Allen Institute of Artificial Intelli-
gence (AI2) which allows people to research and review open
source AI resources (e.g., datasets and software). To initialize
the content of Open AIR, an administrator manually searched
for resources on the Web and added their information to the
website. Open AIR provides three ways for a user to con-
tribute to the community: first, by submitting a new resource;
second, by updating an existing resource; third, by comment-
ing on a resource.

We single out commenting on a resource for three reasons.
First, the initialization process meant that Open AIR already
had many resources in its DB. Second, commenting on a re-
source requires less effort than other kinds of contributions
and should be easier to encourage. Third (and most impor-
tant), reviews and opinions (comments) provide useful infor-
mation for users who want to use the resources in the future,
which creates unique value for the community. Bootstrap-
ping Open AIR, therefore, means encouraging enough non-
members to come and review resources that the site reaches a
tipping point and becomes self-sustaining.

In order to apply the decision-theoretic model we need a set
of possible contributors, H , whom we consider to be au-
thors with a Google Scholar page. We define one task, t ∈ T ,
for each resource. A contribution request also has a design
d ∈ D, which is an email template (described below) that
we use when asking the non-member to contribute a review.
The final requirement for the decision-theoretic model is a set
of parameter values — specifically, the probability of contri-
bution, P(ch,t | d, ih,t), for different designs, d, and different
interest levels, ih,t. These probabilities are estimated in our
Experiments section. But before we can measure these prob-
abilities, we need to define the features that we’ll use for con-
ditioning. The next subsection discusses the set of values we
consider for ih,t and how text mining can extract these features
from public information on the Web. The following subsec-
tion describes our request designs, d.

Text Mining Features to Predict Contributions
As we have mentioned, the interests of non-members are dif-
ficult to model because the system doesn’t have logs of their
activity in the community. Therefore, to estimate the inter-
est level ih,t of non-member h responding to a task t about
a resource, we propose that a system can use text mining of
publicly available information on the Web. For a research-
oriented community like Open AIR, non-members of partic-
ular interest (researchers) leave information traces in the form
of publications. When authors cite a resource, they indicate
basic knowledge or understanding of the resource and may be
more likely to write comments for that resource.

Moreover, the text surrounding a citation may contain valu-
able information about the citation, its role in the paper, and
the author’s interest in the corresponding resource. To ana-
lyze these citation contexts, we manually examined 100 of
them to see if there were any patterns. Preliminary analysis
revealed two types of citation contexts: 1) the authors indi-
cate using the software or dataset to conduct an experiment;
or 2) the authors do not indicate using the resource, but list the



TEXT-USE Citation Context

True We used the Stanford Named Entity
Recognizer [4] in order to extract names
of places, organizations and people
names from the target.

True We apply Stanford NER toolkit to ex-
tract named entities from the texts
(Finkel et al., 2005).

False In contrast, NER systems only catego-
rize named entities to several predefined
classes (typically ‘organization’, ‘per-
son’, ‘location’, ‘miscellaneous’ [13]).

False However, current NER systems such as
Stanford NER that achieve F1 scores of
0.87 on news articles [21], achieve a
significantly lower F1 score of 0.39 on
tweets with a precision as low as 0.35.

Table 1. Examples of the two types of citation context that determine the
TEXT-USE feature.

paper to recognize previous or related work. For examples of
the two types of citation contexts, see Table 1.

An orthogonal dimension of the citation context is the sen-
timent of the text. If an author expresses strong sentiment,
either positive or negative, he or she may be more likely to
respond to a request about the cited resource [12]. We enu-
merate the text mining features that characterize the interac-
tion ih,t of non-member h with a task t as follows:

• TEXT-CITE: True if a human, h, has cited the resource
and False otherwise.

• TEXT-USE: True if h has cited the resource and indicated
use and False if h has cited the resource without indicating
use.

• TEXT-SENT: Positive, Neutral, or Negative based on the
sentiment of h’s citation of the resource.

TEXT-USE and TEXT-SENT are only defined when TEXT-
CITE is True.

For each resource, we determine these features for non-
members as follows. First, we extract the title of the paper
that describes the resource. For instance, the Open AIR re-
source “Stanford log-linear part-of-speech tagger” has a link
to the associated paper “Enriching the Knowledge Sources
Used in a Maximum Entropy Part-of-Speech Tagger.” Using
the title of this paper, we search Google Scholar to retrieve
the papers that cite the resource paper using the “Cited by
X” link.7 Finally, we parse the authors’ email addresses in
the citing papers to obtain a list of emails of non-members
who have written papers that cite the resource paper. TEXT-
CITE is True for a non-member / resource pair when the non-
member’s email appears in this list.

7Our experiments adhere to the Google Scholar ToS, as the first au-
thor manually executed the queries.

To extract the citation contexts, we built a parser to parse the
text around citations in two common reference styles. The
first style is the (Author year) format used in this paper. To
find these citations, we used a regular expression to construct
the (Author year) pattern with the author information and
published year of the resource paper. The second reference
style is the [number] format, where the number is the index
of the citation in the paper’s References section. To find these
citations, we searched for the title of the resource paper in
the References section to find its index, and searched for the
pattern [number] using that index. In each case, the citation
context is the sentence containing the citation.

We analyze these citation contexts to determine the values
of TEXT-USE and TEXT-SENT. To determine the value of
TEXT-USE, we expanded the verb use with WordNet [26]
to obtain a synset, or collection of synonym words.8 TEXT-
USE is True when any of the stemmed words in the citation
context matches a word from the synset. To determine the
value of TEXT-SENT, we perform sentiment analysis of the
citation context using SentiWordNet [14]. SentiWordNet is a
lexical resource that maps each synset in WordNet to scores
that quantify the amount of positive and negative sentiment.
To calculate a single average score for the sentiment of the
citation context, we sum the positive scores and subtract the
negative scores of each word, then divide by the total number
of words. TEXT-SENT is Negative for average scores lower
than −0.007 (1st quartile), Positive for scores higher than
0.018 (3rd quartile), and Neutral for scores between −0.007
and 0.018.

Designing Contribution Requests
Another parameter that affects the probability of contribution
in our model is the request design d. In our case, this refers to
the type of email message that was sent to non-members ask-
ing for a comment. When crafting these pleas, we expected
that the response rate would be inversely proportional to the
effort needed for the person to make the contribution, so we
tried to make contributions as simple as possible.

Our initial design allowed non-members to comment on a
resource by simply hitting “reply” to the request email; the
body of their reply was automatically added to the Open AIR
website and attributed to the person sending the email. Al-
though this allowed people to enter reviews quickly and with-
out leaving their email client, it was a failure. Not a single one
of the 69 recipients submitted a review. Informal interviews
suggested that the problem was likely a lack of context — the
non-members had neither a sense of the type of review that
was expected nor how it would appear on the website. Based
on this feedback, we switched to a different approach.

Our next designs brought the non-member directly to the
site. A baseline design explained Open AIR and how their
contribution would benefit the community, then provided a
hyper-link labeled “Tell us about your experience using this
resource.” If the person clicked on the link the landing page
presented two text boxes for 1) their name and 2) their com-
ments on the resource.

8The words in the synset are use, utilize, apply, and employ.



Resource Name Associated Paper

Scikit-learn Scikit-learn: Machine learning in
Python

WEKA The WEKA Data Mining Software:
an Update

Pascal VOC
Dataset

The Pascal Visual Object Classes
(VOC) Challenge

Stanford Named
Entity Recog-
nizer

Incorporating Non-local Information
into Information Extraction Systems
by Gibbs Sampling

Caltech 101 Learning Generative Visual Models
from Few Training Examples

Table 2. The five resources that we asked the non-members to comment
on in our study.

Our final design utilized a method known as the “foot-in-the-
door technique” [16], which showed that if one first asks a
person to complete an easy task, they are more likely to later
do a more time consuming task. With this method the can-
didate received a message identical to the baseline, but in-
stead of a link inviting “Tell us about your experience using
this resource.” we presented a simple question which asked
whether the recipient would like to recommend the resource
to other AI researchers, and then presented two links, one
for “Yes” and one for “No.” Once the non-member clicked
one of these links an Open AIR page would open in a web
browser displaying an interface that invited them to elaborate
their opinion with more detailed information. In summary,
we experimented with two designs, corresponding to the fol-
lowing feature:

• REQ-FOOT: True if a design, d, uses the foot-in-the-door
techniques and False otherwise.

Although the comments induced in the REQ-FOOT = True
condition require the same amount of effort as the baseline
(clicking a link, entering a comment, and clicking submit), we
conjectured that the the foot-in-the-door design would yield
a greater number of reviews. The ability to contribute a use-
ful bit of information with a single click might induce non-
members to invest in the community, and once engaged they
would more likely contribute a review.

EXPERIMENTS
To estimate the probability of contribution for different con-
ditions, we conducted a set of controlled experiments with
Open AIR. In our experiments, we focused on five different
Open AIR resources (Table 2) and emailed contribution re-
quests to 1,339 non-members who cited at least one of the re-
sources. The emails were sent out on weekday mornings be-
tween 10/28/2014 and 11/10/2014. For reference, the email
template for the request which applies the foot-in-the-door
technique can be found in the Appendix. The email campaign
was managed using MailChimp,9 which allowed us to record
whether the recipients opened the email and clicked the links

9http://mailchimp.com/

Figure 2. Comparison between the requests that perfectly match the
non-member and the resource they cited (Intelligent), and the requests
randomly assign one of the three resources to the non-member (Ran-
dom). The results show that the requests that perfectly match the non-
members and the resources they cited had a significantly higher open
rate, click rate, and comment rate.

in the email. If the non-members accepted the request and
commented on the resources using the web interface, our pro-
gram would record the information of the comments and au-
tomatically post the comments on Open AIR. To determine
the quality of the comments generated by these non-members,
we manually examined all the comments resulting from the
requests of our experiments. The average length of the com-
ments is 26.4 words. The comments also provide different
perspectives for the users to better understand the resources.
For example, one comment mentioned that Scikit-learn is not
only a useful resource, one can also learn about the algo-
rithms from their website and documentation: Scikit provides
a wide variety of Machine Learning and data-processing al-
gorithms, all interfaced through Python. Plus, their website
is a great resource for concepts and details about the algo-
rithms. Also, another comment about PASCAL VOC dataset
helps the users to understand why this dataset is so important
to computer vision research: Currently, it is the best computer
vision dataset for evaluating object detection algorithms. It
has had a long history and has been instrumental in greatly
improving the state-of-the-art of object detection. The results
suggest that the comments generated by these non-members
can be useful for other members in the community.

The Effects of Citing a Resource
In the previous section, we made the case for the following
hypothesis.

H1a: Non-members who wrote papers that cited a resource
are more likely to accept a request to comment on the re-
source.

To see if we can use the information of who cited the resource
(obtained by text mining the Web) to bootstrap contributions
from non-members, we conducted an experiment that sent
requests to non-members who cited one of three Open AIR
resources: Weka, Scikit-learn, and the Pascal VOC Dataset.
The emails were sent under two conditions:



Figure 3. Comparison between the requests sent to non-members who
expressed they used the resource in the citation context and those who
didn’t. The results show that the non-members who mentioned they
used the resource in the citation context were significantly more likely to
comment on the resource.

1. Intelligent: The system sent contribution requests only to
non-members who have cited one of the three resources
(TEXT-CITE = True for all h in this condition).

2. Random: The system randomly selected one of the three
resources and sent requests asking the non-members to
comment on that resource. We controlled this condition to
ensure that the probability a recipient has cited the resource
was at least 1/3 by including the non-members that we
knew cited the resource (P(TEXT-CITE = True) ≥ 1/3
in this condition).

403 request emails were sent under the Intelligent condition
and 382 request emails were sent under the Random condi-
tion. The results show that the requests sent under the In-
telligent condition had significantly higher email-open rates
(49.1% v.s. 40.8%, χ2 = 5.45, p = 0.02, n = 885, d f = 1,
effect size= 0.079 ), link-click rates (10.7% v.s. 4.7%,
χ2 = 9.71, p < 0.01, n = 885, d f = 1, effect size = 0.105),
and comment rates (5.0% v.s. 1.3%, χ2 = 8.49, p < 0.01,
n = 885, d f = 1, effect size = 0.098) (Figure 2). One
should note that the Random condition tested in this study is
actually quite a strong baseline with 1/3 chance that the non-
members cited the resource. Moreover, subsequent analysis
showed that all of the non-members who ended up writing
comments under the Random condition in fact had cited the
corresponding resource in some paper. This result provides
strong support for H1a and shows that authors that cited a re-
source (TEXT-CITE = True) were significantly more likely
to open email requests, follow links, and contribute by writing
comments about the resource. It also confirms our hypothesis
that obtaining features by text mining the web can be used to
help a community bootstrap content from the contributions of
non-members.

The Effects of the Context of a Citation
Since the context of a citation provides information about an
author’s relationship to a cited resource, we are interested in

Figure 4. Comparison between the requests sent to non-members who
expressed negative, neutral, and positive opinions in the citation context.
The results show that there were no significant differences between the
conditions.

whether we can use text mining to determine which authors
are more likely to accept contribution requests. Our first hy-
pothesis is that the TEXT-USE feature will help us predict
requests that will result in contributions.

H1b: Non-members who indicate in the citation context hav-
ing used a resource are more likely to comment on the re-
source.

In this experiment, we focused on 340 non-members who
cited one of the five resources listed in Table 2. We extracted
the context of their citation, using the method described in
the previous section. We separated the non-members into two
conditions, based on whether the citation context showed that
they had used the resource to accomplish a task (TEXT-USE
= True, n = 153) or merely compared to it (TEXT-USE =
False, n = 187).

The results show that the email-open rates were similar for
the two conditions (47.7% v.s. 50.3%, χ2 = 0.22, p = 0.64,
n = 340, d f = 1, effect size = 0.025). In terms of click rates,
we can see that the click rate for the group who indicated
using the resource is about 50% higher, but the difference
is not statistically significant (11.1% v.s. 7.5%, χ2 = 1.33,
p = 0.25, n = 340, d f = 1, effect size = 0.063). The biggest
difference between the two groups occurred in the comment
rate. Non-members whose context indicated resource usage
were three times more likely to provide a written review than
the control group (5.9% v.s. 1.6%, χ2 = 4.52, p = 0.03, n =
340, d f = 1, effect size = 0.116) (Figure 3). This supports
H1b and shows that authors who indicate having used the
resource in the citation context (TEXT-USE = True) have a
significantly higher contribution rate.

Previous research has shown that people are more likely to
leave highly positive or negative reviews because high va-
lence experiences often motivate interpersonal communica-
tion [12]. Therefore, we hypothesized that this might also
apply with respect to request acceptance.



Figure 5. Comparison between the requests that asked a simple yes/no
question first and the baseline. The results showed that requests that ap-
plied the foot-in-the-door technique lead to more clicks and more com-
ments from the non-members.

H1c: Non-members who expressed strong positive or nega-
tive opinions when describing the citation are more likely to
comment on the resource.

To test this hypothesis in the case of Open AIR, we analyzed
the same 340 emails from the previous experiment, partition-
ing them into 3 groups: TEXT-SENT = Negative (n = 83),
TEXT-SENT = Neutral (n = 175), and TEXT-SENT = Pos-
itive (n = 82), based on their average sentiment score.

The results suggest that there were no significant differences
between the sentiment score groups in terms of email-open
rate (44.6% v.s. 47.4% v.s. 57.3%, χ2 = 3.09, p = 0.21,
n = 340, d f = 2, effect size = 0.096), link-click rate (6.0%
v.s. 9.7% v.s. 11.0%, χ2 = 1.38, p = 0.50, n = 340, d f = 2,
effect size = 0.064), or comment rate (2.4% v.s. 3.4% v.s.
4.9%, χ2 = 0.75, p = 0.69, n = 340, d f = 2, effect size
= 0.047) (Figure 4). There are several possible reasons that
we couldn’t find significant differences across these condi-
tions. First, our sample size may have been too small. Sec-
ondly, an author’s sentiments may have changed since the
paper was written. Furthermore, the sentiment analysis we
performed was imperfect, and some contexts may have been
mis-classified. We believe a follow-up study may be war-
ranted. Nevertheless, at least in our current experiment, we
were unable to find evidence for H1c and we conclude that
a person’s stated sentiment toward a resource (TEXT-SENT)
might not be an important factor for contribution rate.

The Effects of Foot-in-the-Door Request Design
Since the foot-in-the-door technique has been proven in a
business context [16], we hypothesized that it might apply
to online communities.

H2: Non-members who initially receive a smaller “Yes/no”
request are more likely to subsequently contribute a written
review to the community.

To test this hypothesis, we sent 403 request emails which
asked a yes/no question first (see Appendix) and then invited

d ih,t P(ch,t |d, ih,t)

REQ-FOOT TEXT-CITE 0.050

REQ-FOOT TEXT-USE 0.059

REQ-FOOT TEXT-CITE ∧¬ TEXT-USE 0.016

REQ-FOOT TEXT-CITE ∧ TEXT-SENT=Pos 0.049

REQ-FOOT TEXT-CITE ∧ TEXT-SENT=Neut 0.034

REQ-FOOT TEXT-CITE ∧ TEXT-SENT=Neg 0.024

¬ REQ-FOOT TEXT-CITE 0.017
Table 3. The contribution probabilities with different design requests
and the interest of a human in a task.

a written comment (REQ-FOOT = True) and 407 request
emails that directly asked the recipients to write a comment
(REQ-FOOT = False). Recipients in both conditions were
non-members who had cited either Weka, Scikit-learn, or the
Pascal VOC Dataset. The email-open rates, link-click rates,
and comment rates of the two conditions were compared.

The results showed that the email-open rates were similar
between the two conditions (49.1% v.s. 44.7%, χ2 = 1.58,
p = 0.21, n = 810, d f = 1, effect size = 0.044), which makes
sense because the subject lines were identical. However, the
non-members who received foot-in-the-door requests were
not only significantly more likely to click the link in the
email (10.7% v.s. 4.7%, χ2 = 10.32, p < 0.01, n = 810,
d f = 1, effect size = 0.113), they were also significantly
more likely to leave comments about the resource (5.0% v.s.
1.7%, χ2 = 6.61, p = 0.01, n = 810, d f = 1, effect size
= 0.906) (Figure 5). Thus, the findings support H2 and show
that the foot-in-the-door technique is an important tool for
encouraging comments.

SIMULATION EXPERIMENT
To examine whether the decision-theoretic model we pro-
posed really increases the utility of bootstrapping online com-
munities, we conducted a simulation experiment using the
synthetic data generated with the parameters learned from the
previous experiments (Table 3) and real data collected from
Microsoft academic search.

Method
To generate the citation graph which represents which au-
thors cite which resources in their paper, we first parsed the
publication information of all the AI researchers listed in Mi-
crosoft academic search10. This gave us a list of 266,101 au-
thors, along with the number of publications each has pro-
duced. Then, we randomly sampled 400 authors11 and gen-
erated the corresponding number of synthetic papers for each
author. After that, we constructed the citation graph using
the rich-get-richer model [13]. In this model, we first ran-
domly sorted the papers; then, we created citations for the
papers sequentially. We assumed each paper cites 29 papers
(the mean number of citations for 10 randomly sampled pa-
pers was 28.8). For each citation, we randomly cite one of
the previously processed papers with probability pcite and

10http://academic.research.microsoft.com/
11Our earlier experiments sent roughly this many emails.



randomly cite a paper cited by a previously processed paper
with probability (1 − pcite). We report experimental results
with pcite = 0.5.12 This process ensures that the paper ci-
tations followed the power law. After the citation graph was
generated, we randomly sampled 100 papers as the resources
in the community. Based on data collected from our earlier
experiments, we mark with 0.45 probability that the author of
a citation really used that resource.

Based on the citation graph and the contribution probabili-
ties we collected from our previous experiments (Table 3),
we simulated the requests sent out by the community. We
compare three methods for issuing requests:

1. Random: Send out requests that map the authors to the
resources randomly.

2. Greedy: Based on the citation information, assign each
author to the resource to which they are most likely to con-
tribute.

3. Decision-theoretic Optimization: Issue requests using
Algorithm 1.

We assumed the utility of the contributions of each task is
log[100Ct + 1], where Ct is the number of contributions that
are made to task t. We chose this utility function because
it has the property of diminishing utility for each additional
contribution, a reasonable assumption since our community
does not benefit from having all the contributions concen-
trated on only a few resources. We added 1 inside the log
function to ensure nonnegative utilities. Since the expected
utilities for many resources were less than one, we also mul-
tiply by 100 so that the utility is not dominated by the added
constant factor.

We note that the Greedy and Random baselines are the
strongest we could reasonably produce. For these baselines,
we assign the authors with the highest probability of con-
tributing to some resource first. Additionally, we break ties
randomly, which has the effect of distributing contributions
and dramatically improving the resulting utility.

Results
We generated 100 graphs using the method described in the
previous section and simulated the requests sending in three
different conditions: Random, Greedy, Decision-theoretic
Optimization. The average expected utility of the three con-
ditions on the five graphs are reported in Figure 6. The ex-
pected utility of the decision-theoretic algorithm is signifi-
cantly higher than both baselines (using a two-tailed indepen-
dent samples t-test). In particular, after issuing 400 requests,
its expected utility is significantly higher than Random (58.9
v.s. 3.1, p < 0.001), and it also performed significantly bet-
ter than a strong baseline which assigned the authors greedily
to the resources they were most likely to contribute to (58.9
v.s. 54.4, p < 0.001). Importantly, the figure also shows that
decision-theoretic optimization needs to issue only 55% (220)
of the 400 requests in order to reach the maximum expected
utility of the best (greedy) baseline.

12We found that our results improve as we decrease pcite, so we
chose 0.5 as a representative value.

Figure 6. Decision-theoretic optimization achieves significantly higher
expected utility and requires 55% as many requests (220) to match the
maximum expected utility of the strongest baseline. Plot shows the mean
expected utility over 100 simulations, with shaded 95% confidence inter-
vals.

In addition to this main result, we performed a sensitivity
analysis that showed our results to be robust and unchanged
when we are not given the true probabilities of contribution.
In this analysis, we provided the algorithms with access to
the expected probability values used in our experiment, but
sampled the true values from normal distributions centered at
those values (and truncated at 0 and 1). Increasing the vari-
ance of these distributions until 2 standard deviations equaled
the probability value itself did not alter our findings. Com-
pared to the best (greedy) baseline, the decision-theoretic op-
timization method still achieved significantly higher expected
utility after 400 requests (59.4 vs. 54.9, p < 0.001) and re-
quired only 56% as many requests to reach the maximum ex-
pected utility. This result is promising for a real-world de-
ployment, where actual probability values would be drawn
from a distribution rather than the expected value of that dis-
tribution.

LIMITATIONS & IMPLICATIONS
We are encouraged by the positive results from our exper-
iments, but caution that there are several limitations to our
study and our proposed method.

First, we only tested our method in one community. It may
be the case that Open AIR is the best case for our datamining
method, given the quality of corresponding data in Google
Scholar. While more experiments are needed to demonstrate
that our approach generalizes, there are other communities
where the approach has worked or is worth considering:
• AirBnB / Craigslist: AirBnB reputedly bootstrapped

their inventory of rental properties by crawling Craigslist
for candidate homeowners who had listed properties,
sending them emails from supposed AirBnB “fans.” [30].
While this is a blackhat example that may have violated
Craigslist terms of service, it illustrates the method’s ap-
plicability.



• SummitPost / CascadeClimbers:13 The SummitPost
community maintains an online guidebook of mountain-
climbing route descriptions for a worldwide audience.
CascadeClimbers is a regional community website where
climbers post pictures, accident updates and trip reports
describing their outings. In contrast to the AirBnB /
Craigslist example, these communities are complemen-
tary, not competitive. Since someone who has written
a trip report has the knowledge to turn their tale into
a more comprehensive and instructive route description,
one might attract SummitPost contributions through the
CascadeClimbers forum reply feature. For full coverage,
one would wish to mine other regional sites as well.

• 500px / Reddit:14 500px caters to a community of profes-
sional photographers who wish to showcase and sell their
work to stock photo buyers. Reddit is a hierarchically-
organized social news site; the photography subreddit fea-
tures a wide ranging conversation about images and tech-
niques. Someone who has posted several of their pictures
on reddit is, therefore, a reasonable candidate member for
500px and might welcome a private message suggesting
the site.

• Movie Reviews / Twitter: One might consider bootstrap-
ping a movie review website by parsing Twitter posts for
movie hashtags and using text mining techniques to see
whether the author expressed strong sentiment indicating
proclivity to posting a review. While this example sat-
isfies our requirement for “datamining bootstrappability,”
Twitter is noisy enough that such an approach seems un-
likely to work.

The success of our recommended bootstrapping approach
depends not just on the three conditions in our definition,
but also on empirically determined parameters, such as the
number of candidate nonmembers that can be unearthed via
datamining, the accuracy of targeting and resulting response
rate, the quality of the contributions, and the utility derived
by the community over time. Further empirical studies are
needed to determine how general is our method.

In addition, the performance guarantee of Algorithm 1 is
based on the monotone submodularity of the utility function.
Our algorithm might not perform as well when the commu-
nity has a utility function with different properties. For exam-
ple, a community might want contributions to focus on a few
resources so resource popularity can attract newcomers to the
community. However, the goal of our paper is not to provide
a definite algorithm that can apply to every online commu-
nity. Instead, we are trying to establish a decision-theoretic
framework which allows the community designer to design
their own algorithm that maximizes the community’s utility.
In the future, we plan to work with other online communities
and come up with different optimization algorithms based on
their individual utility functions.

13Respectively, at www.summitpost.org and
cascadeclimbers.com.

14See 500px.com and www.reddit.com/r/photography.

CONCLUSIONS AND FUTURE WORK
In this paper, we define bootstrapping an online community as
a decision theoretic optimization problem. Although an op-
timal solution to the problem is combinatorially prohibitive,
we present an efficient greedy algorithm and prove that it allo-
cates requests within a constant factor of optimal. To demon-
strate the practicality of our approach, we consider Open AIR,
a newly created community for researching and reviewing
open AI software and data resources. We show that text min-
ing techniques, applied to Google Scholar pages, can extract
several strong features that correlate with a person’s interest
in contributing a review.

Specifically, our results show that people who have authored
a paper that cited an article describing a resource are more
likely to comment on the resource than people who did not.
Furthermore, by mining the context of these citations, our
system can detect people who actually used the resource in
their work; these people are significantly more likely to com-
ment on the resource than people who simply acknowledge
the resource as related work. Although we expected that
strong positive or negative sentiment in the citation context
would also signal a greater willingness to comment, the evi-
dence did not support this conclusion.

Furthermore, our study shows that effective request design is
an essential factor when encouraging non-members to con-
tribute. Specifically, we found that first asking people a sim-
ple request (e.g., a binary “yes/no” question like “Would you
recommend the resource?”) significantly increased the like-
lihood that they would contribute the more time-consuming
full-text review. This finding confirms the usefulness of the
foot-in-the-door technique [16] in the context of bootstrap-
ping an online community.

In the course of our experiments we were also able to learn
parameter values for the conditional probabilities needed
by our decision-theoretic model. Based on this informa-
tion, we ran a simulation experiment showing that decision-
theoretic control achieves comparable expected community
utility while issuing only 55% as many contribution requests,
compared to a strong baseline approach.

We are now ready to deploy the model on an even larger-
scale to see if we can complete the bootstrapping process and
bring Open AIR across the tipping point to self-sustaining
traffic. Additional important directions for future research in-
clude adding explicit budget constraints to our model, con-
sidering a wider range of utility functions, and applying our
method to other online communities. Since the pairing of
Google Scholar and Open AIR may represent the best case
for datamining-based bootstrapping, further experimentation
will help demonstrate the generality of our approach.
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APPENDIX: CONTRIBUTION REQUEST EMAIL

Subject: Did you use [[Resource Name]]?

Hi,

We’d love to hear your opinion on [[Resource Name]]! Click one of the links
below to tell us your opinion about this resource.

I would recommend this resource to other AI researchers

I would NOT recommend this resource to other AI researchers

I haven’t used [[Resource Name]]

Your opinion will be publicly posted, along with your name, on Open AIR,
an open source collaboration hub for AI researchers run by the Allen Institute
for Artificial Intelligence (AI2). Your contribution will help make Open AIR
a valuable resource for the entire AI community.

Your response will also help us improve our understanding of how to encour-
age contribution to an online community. This study is being conducted by
researchers at the [[anonymized author information]] who, in collaboration
with AI2, are studying ways of bootstrapping online communities, including
an analysis of user behavior in response to different email campaigns. Click
here for more details about our study. This study is completely anonymous,
but if for any reason you do not wish to participate, please click here and no
data will be recorded. If you have any questions or suggestions, please email
[[anonymized author information]]
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