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Value of online communities

23 million users, over 4
million English articles*

14 million answers to
|=Istackoverflow 8.5 million questions*

YEIp’k 67 million reviews*

*as of December 2014
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Most online communities fail

* SourceForge: 10% of projects at least 3
members

* Email groups: 50% received no messages
during four-month study
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The tipping point
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[Figure 17.6, Easley & Kleinberg 2010]
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Reaching critical mass

* Recruit through existing members
* Create content that provides value

— Recruit new members

— Guide new members to create similar content
[Solomon & Wash, CSCW "12]
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Members Content
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Paid contributors
[Resnick et al.]
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Paid contributors
[Resnick et al.]

Volunteer contributors
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Creating content

Tasks L|kely contributors

) 2
y &

RS
38

Z& dub A2



Al resources community

€ = C [} airesources.org

Resources

Il

(OO

Artificial Intelligence ¥ Choose subtopic

Search within Artificial Intelligence

Advanced Search Tips

First Previous n 2 3 Next Last

O ig Stanford Log-linear Part-Of-Speech Tagger 273

= 1 http://www-nlp.stanford.edu/software/tagger.shtml
A maximum-entropy (CMM) part-of-speech (POS) tagger for English, £

N 27
© 37 LIBSVM 223
® 7  hitp://www.csie.ntu.edu.tw/~cjlin/libsvm/
LIBSVM is a popular open source machine learning libraries, develope
n o o - - -
' 35 UCI Machine Learning Repository 73
. 3 https://archive.ics.uci.edu/ml/datasets.htmi
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Al resources community

€& = C [} airesources.org

Add Resource About
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Advanced Search Tips

First Previous n 2 3 Next Last

'© 39 Stanford Log-linear Part-Of-Speech Tagger I3
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Airbnb community

@ craigslist

1 to 100 of 2500 next >

Feb29 | Bedroom 1 Bath with Bonus Den, Balcony and
Courtyard View $2800 / 1br - 740ft? - (bayview)

map

Feb 20 MASTER BEDROOM WITH PRIVATE
Bathroom FOR RENT $1175 / 1br -

(excelsior / outer mission) map

Feb 29 Private room | Shared Bath | Daily maid service |
Caltrain < 5 min $1800 / 1br - 1600ft? - 8

(SOMA / south beach) map

3o o
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How to get the most (best) content?

Tasks Likely contributors
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Which task to assign?

Likely contributors
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Which request design?

Tasks ? Likely contributors
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Which request design?

Tasks ? Likely contributors
m O,
et R
—R I
m 32

Possible request sets: 0o,
|Humans| x |Tasks| x | Designs | , |




Expected utility of a set of requests

Tasks Likely contributors
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Expected utility of a set of requests

Tasks Likely contributors




Expected utility of a set of requests

* Subset of requests result in contributions
* Contributions have varying quality

 Possible outcomes:
(1 + |Qualities|) » |Humans|

e Utility of outcome

— Diminishing returns for each task
— 15t contribution more valuable than 100th
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Algorithm to maximize expected utility

* While someone is unassighed a request:
— Select request with highest expected utility
— Assign task and mark person assighed
— Recalculate expected utilities

* Guaranteed at least %2 of optimal
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Overview

* Bootstrapping an Al resources community
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Al resources community
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Contributing to Al resources

e Submit a new resource
* Update an existing resource
 Comment on a resource
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Contributing to Al resources

e Comment on a resource

“Scikit provides a wide variety of Machine
Learning and data-processing algorithms, all
interfaced through Python. Plus, their website is
a great resource for concepts and details about
the algorithms.”
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Predicting contributions

- |IERE =

Text mining features Request design
TEXT-CITE REQ-FOOT
TEXT-USE

TEXT-SENT
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Email campaign

* 1,339 non-members who cited one of five
resources

* Email sent via MailChimp on weekday
mornings 10/28/2014 - 11/10/2014
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Predicting contributions

- B = S

Text mining features Request design

TEXT-CITE
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TEXT-CITE

Did the author cite the resource?
(Is there an edge in the graph?)
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Effects of citing a resource

* Conditions
— Intelligent (n =403): TEXT-CITE = True
— Random (n = 382): P(TEXT-CITE = True) >=1/3
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Effects of citing a resource

60.0%
kk %

<0 0 49 1% p<0.01,*p<0.05

. 0
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40.0%
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0.0% - w w
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¥ Intelligent (TEXT-CITE = True)
Random (TEXT-CITE = True with 1/3 probability) 35



Predicting contributions

- B = S

Text mining features Request design

TEXT-USE
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TEXT-USE

Did the author actually use the resource?

v/ Souza et al.: “We apply Stanford NER toolkit to
extract named entities from the texts (Finkel et al.,
2005).”

) 4 Kliegr et al: “In contrast, NER systems only
categorize named entities to several predefined
classes (typically ‘organization’, ‘person’, ‘location’,
‘miscellaneous’ (Finkel et al., 2005)).”
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Effects of citation context

* Conditions
— Used resource (n = 153): TEXT-USE = True
— Cited but did not use (n = 187): TEXT-USE = False
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Effects of citation context

60.0%
7, 50.3% *%p<0.01,*p<0.05
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Predicting contributions

- B = S

Text mining features Request design

TEXT-SENT
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Effects of citation sentiment

e Conditions (sentiment)
— TEXT-SENT = Negative (n = 83)
— TEXT-SENT = Neutral (n = 175)
— TEXT-SENT = Positive (n = 82)
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Effects of citation sentiment
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Predicting contributions

- B = S

Text mining features Request design

REQ-FOOT
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REQ-FOOT = False

Subject: Did you use [[Resource Name]]?
Body: Hi, We’'d love to hear your
opinion on [[Resource Name]]!

Tell us about your experience
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REQ-FOOT = False

&« C D

Your Name:

Subject: Didyouu

BOdy: H i’ We’d You would recommend this resource because...

opinion on [[Resourc

Tell us a@t your e m
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REQ-FOOT = True

Foot-in-the-door
design

Subject: Did you use [[Resource Name]]?
Body: Hi, We’'d love to hear your
opinion on [[Resource Name]]! Please
choose one of the following:

Recommended to other Al researchers
NOT recommended to other Al researchers
Haven’t used [[Resource Namel]]
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REQ-FOOT = True

Foot-in-the-door
deS|gn S c0 | w s B

Your Name:

Subject: Didyouu

BOdy: H i’ We’d You would recommend this resource because...

opinion on [[Resourc
choose one of the fo

Recognmended to ot
NO% i:’ommended '
HavelrT used [[Resource Namel]
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Effects of request design

* Conditions
— Foot-in-the-door (n =403): REQ-FOOT = True
— Basic link (n = 407): REQ-FOOT = False
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Effects of request design
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Estimated parameters

Design Features P(Contribute)
REQ-FOOT TEXT-CITE 0.050
REQ-FOOT TEXT-USE 0.059
REQ-FOOT TEXT-CITE A— TEXT-USE 0.016
REQ-FOOT | TEXT-CITE A TEXT-SENT=Pos 0.049
REQ-FOOT | TEXT-CITE A TEXT-SENT=Neut 0.034
REQ-FOOT | TEXT-CITE A TEXT-SENT=Neg 0.024

-~ REQ-FOOT TEXT-CITE 0.017

A dubAi2 50



Request issuing experiment

* Generated 100 citation graphs
e Utility function: log of # contributions
* Request strategies:

— Random: Assign authors to resources randomly

— Greedy: Assign author to resource most likely to
contribute to

— Decision-theoretic algorithm: Described earlier
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Expected utility

Request Issuing experiment
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Contribution requests issued



Conclusions

Bootstrapping as decision-theoretic
optimization

Exact solution infeasible, but simple algorithm
with guarantees

Text-mining can predict contribution
probabilities

Effective request design essential

Learned parameters let our method make
fewer requests
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Future work

Bring our community to the tipping point
Other communities and utility functions
Richer prediction models

Request desigh extensions
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Future work

* Bring our community to the tipping point
 Other communities and utility functions
* Richer prediction models

* Request design extensions

Thanks!
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