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Value	of	online	communi2es	
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*as	of	December	2014	

23	million	users,	over	4	
million	English	ar2cles*	

14	million	answers	to	
8.5	million	ques2ons*	

67	million	reviews*	



Most	online	communi2es	fail	

•  SourceForge:	10%	of	projects	at	least	3	
members	

•  Email	groups:	50%	received	no	messages	
during	four-month	study	
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The	2pping	point	
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[Figure	17.6,	Easley	&	Kleinberg	2010]	



Reaching	cri2cal	mass	

•  Recruit	through	exis2ng	members	
•  Create	content	that	provides	value	
– Recruit	new	members	
– Guide	new	members	to	create	similar	content	
[Solomon	&	Wash,	CSCW	’12]	
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Members	 Content	
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Members	 Content	

Copy	it	
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Members	 Content	

Copy	it	

Paid	contributors	
[Resnick	et	al.]	
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Members	 Content	

Copy	it	

Paid	contributors	
[Resnick	et	al.]	

Volunteer	contributors	
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Crea2ng	content	
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Tasks	 Likely	contributors	



AI	resources	community	
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AI	resources	community	
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AI	resources	community	



Airbnb	community	
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How	to	get	the	most	(best)	content?	
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Tasks	 Likely	contributors	



Which	task	to	assign?	
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Tasks	 Likely	contributors	
?	



Which	request	design?	
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Which	request	design?	
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Tasks	 Likely	contributors	?	

Possible	request	sets:	
|Humans|	x	|Tasks|	x	|Designs|	



Expected	u2lity	of	a	set	of	requests	
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Expected	u2lity	of	a	set	of	requests	
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Tasks	 Likely	contributors	



Expected	u2lity	of	a	set	of	requests	

•  Subset	of	requests	result	in	contribu2ons	
•  Contribu2ons	have	varying	quality	
•  Possible	outcomes:	
	 	(1	+	|Quali2es|)	^	|Humans|	

•  U2lity	of	outcome	
– Diminishing	returns	for	each	task	
– 1st	contribu2on	more	valuable	than	100th	
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Algorithm	to	maximize	expected	u2lity	

•  While	someone	is	unassigned	a	request:	
– Select	request	with	highest	expected	u2lity	
– Assign	task	and	mark	person	assigned	
– Recalculate	expected	u2li2es	

•  Guaranteed	at	least	½	of	op2mal	
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AI	resources	community	



Contribu2ng	to	AI	resources	

•  Submit	a	new	resource	
•  Update	an	exis2ng	resource	
•  Comment	on	a	resource	
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Contribu2ng	to	AI	resources	

•  Submit	a	new	resource	
•  Update	an	exis2ng	resource	
•  Comment	on	a	resource	
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“Scikit	provides	a	wide	variety	of	Machine	
Learning	and	data-processing	algorithms,	all	
interfaced	through	Python.	Plus,	their	website	is	
a	great	resource	for	concepts	and	details	about	
the	algorithms.”	



Predic2ng	contribu2ons	
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Text	mining	features	 Request	design	

TEXT-CITE	
TEXT-USE	
TEXT-SENT	

REQ-FOOT	



Email	campaign	

•  1,339	non-members	who	cited	one	of	five	
resources	

•  Email	sent	via	MailChimp	on	weekday	
mornings	10/28/2014	-	11/10/2014	
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Predic2ng	contribu2ons	
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Text	mining	features	 Request	design	

TEXT-CITE	
TEXT-USE	
TEXT-SENT	

REQ-FOOT	
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TEXT-CITE	

Did	the	author	cite	the	resource?	
(Is	there	an	edge	in	the	graph?)	



Effects	of	ci2ng	a	resource	

•  Condi2ons	
–  Intelligent	(n	=	403): 	TEXT-CITE	=	True	
– Random	(n	=	382): 		 	P(TEXT-CITE	=	True)	>=	1/3	
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Effects	of	ci2ng	a	resource	
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*	 *	*	 *	*	

*	*	 *	



Predic2ng	contribu2ons	
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Text	mining	features	 Request	design	

TEXT-CITE	
TEXT-USE	
TEXT-SENT	

REQ-FOOT	



TEXT-USE	

✔ Souza	et	al.:	“We	apply	Stanford	NER	toolkit	to	
extract	named	en22es	from	the	texts	(Finkel	et	al.,	
2005).”	

✖ Kliegr	et	al:	“In	contrast,	NER	systems	only	
categorize	named	en22es	to	several	predefined	
classes	(typically	‘organiza2on’,	‘person’,	‘loca2on’,	
‘miscellaneous’	(Finkel	et	al.,	2005)).”	
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Did	the	author	actually	use	the	resource?	



Effects	of	cita2on	context	

•  Condi2ons	
– Used	resource	(n	=	153): 	 		 	TEXT-USE	=	True	
– Cited	but	did	not	use	(n	=	187):	 	TEXT-USE	=	False	
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Effects	of	cita2on	context	
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*	

*	



Predic2ng	contribu2ons	
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Text	mining	features	 Request	design	

TEXT-CITE	
TEXT-USE	
TEXT-SENT	

REQ-FOOT	



Effects	of	cita2on	sen2ment	

•  Condi2ons	(sen2ment)	
– TEXT-SENT	=	Nega2ve	(n	=	83)	
– TEXT-SENT	=	Neutral	(n	=	175)	
– TEXT-SENT	=	Posi2ve	(n	=	82)	
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Effects	of	cita2on	sen2ment	
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Predic2ng	contribu2ons	
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Text	mining	features	 Request	design	

TEXT-CITE	
TEXT-USE	
TEXT-SENT	

REQ-FOOT	



REQ-FOOT	=	False	
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Subject:	 	Did	you	use	[[Resource	Name]]?		
Body:	 	 	Hi,	We’d	love	to	hear	your		
opinion	on	[[Resource	Name]]!		

Tell	us	about	your	experience	



REQ-FOOT	=	False	
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REQ-FOOT	=	True	
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Subject:	 	Did	you	use	[[Resource	Name]]?		
Body:	 	 	Hi,	We’d	love	to	hear	your		
opinion	on	[[Resource	Name]]!	Please	
choose	one	of	the	following:	

Recommended	to	other	AI	researchers		
NOT	recommended	to	other	AI	researchers		
Haven’t	used	[[Resource	Name]]	

Foot-in-the-door	
design	
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Effects	of	request	design	

•  Condi2ons	
– Foot-in-the-door	(n	=	403):	 	REQ-FOOT	=	True	
– Basic	link	(n	=	407):		 	 	 	REQ-FOOT	=	False	

48	



49	

Effects	of	request	design	

*	*	 *	

*	*	*	



Es2mated	parameters	
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Design	 Features	 P(Contribute)	



Request	issuing	experiment	

•  Generated	100	cita2on	graphs	
•  U2lity	func2on:	log	of	#	contribu2ons	
•  Request	strategies:	
– Random:	Assign	authors	to	resources	randomly	
– Greedy:	Assign	author	to	resource	most	likely	to	
contribute	to	

– Decision-theore2c	algorithm:	Described	earlier	
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Request	issuing	experiment	
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Conclusions	

•  Bootstrapping	as	decision-theore2c	
op2miza2on	

•  Exact	solu2on	infeasible,	but	simple	algorithm	
with	guarantees	

•  Text-mining	can	predict	contribu2on	
probabili2es	

•  Effec2ve	request	design	essen2al	
•  Learned	parameters	let	our	method	make	
fewer	requests	
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Future	work	

•  Bring	our	community	to	the	2pping	point	
•  Other	communi2es	and	u2lity	func2ons	
•  Richer	predic2on	models	
•  Request	design	extensions	
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Thanks!	


