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Cycles 

Neo-Riemannian cycles LP, RP, LR, and LRP, shown on the Tonnetz 
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Noisy channel model Research goal 
Automatically identify and label neo-Riemannian cycles in a score of music 

Motivations 
Why automate what music theorists already do? 
•  Formalize the task with a rigorous definition of what constitutes a cycle 
•  Understand musical judgments made during an analysis 
•  Facilitate a comprehensive study 
•  Facilitate a critique of neo-Riemannian theory 

Neo-Riemannian theory 
•  Harmonies are related by transformations, rather than common tonic 
•  Basic transformations P (parallel), L (leading tone), R (relative) 
•  Repeated patterns of transformations generate cycles of harmonies 

Denotes all possible 
transitions, where a 
major/minor chord is 
substituted for each 
instance of Σ1 

Hypothetical score 
“C G C” (input is a 
harmonic analysis) 

Transduces chords to 
transformations (only 
portion corresponding 
to LRP cycle shown) 

Recognizes cycles (only 
LP transducer shown) 
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Σ1 : Σ1 / 0 Σ1 : Σ1 / 0 Parameters are edit costs: 
•  B for bracketing cycles 
•  D for deleting chords inside cycles 
•  X for deleting chords outside cycles 
•  I  for inserting chords 

Related work 

ISMIR 2011, 12th International Society for Music  Information Retrieval Conference, October 24th – 29th, 2011, Miami, Florida, USA 

Natural language processing 
•  Mohri (1997) - Finite-state transducers in language and 

speech processing 
•  Nelken & Shieber (2005) - Arabic diacritization using 

weighted finite-state transducers 
Neo-Riemannian music theory 
•  Siciliano (2002) - Neo-Riemannian transformations and 

the harmony of Franz Schubert 

Conclusion 
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Experiment 
•  Data are analyses of four chamber pieces by Franz Schubert 
•  Training parameters set from system of linear inequalities (empirical) 

o  B + oD + mI < nX (privilege labeling over deletion of an observed 
cycle of n triads with o insertions and m deletions) 

o  D > X (prevent arbitrary cycle extension) 
•  Evaluation scores from global string alignment on each region (calculate 

edit distance between the strings of triads labeled with transformations in 
ground truth and prediction) 
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Ground truth 

Prediction 

Insertions Deletions 

Aligned region 5, D. 956 (C major String Quartet), mvt. 1, mm. 233-250 
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Ground truth 

Prediction 

Aligned regions 

Piece 1 2 3 4 5 6 7 8 9 10 11 Sn Sp St

D. 959 5 4 6 0 5 4 16 20

D. 894 8 10 6 8 10 22 32

D. 956 6 5 9 7 0 7 6 5 0 45 45

D. 929 6 5 6 7 8 7 7 8 4 7 2 2 65 67

Table 2. Alignment costs for each piece, broken down by

region. Bold formatting indicates that the region contains a

cycle in the ground truth.

The evaluation score St of a prediction is equal to the

sum of all edit distances calculated as just described, i.e.

St = Sn + Sp, where Sn is the sum of all edit distance op-

erations on regions with a cycle in the ground truth, and Sp

is likewise defined on all other aligned regions. Sn and Sp

measure in some sense the amount of “false-negativeness”

and “false-positiveness,” respectively, in a prediction.

We use leave-one-out cross-validation on our four pieces

of input data. Training for validation on D. 959, D. 956,

and D. 929 each yielded weights I = 1, B = 1, D =
1.0065, and X = 1.0055, and training for validation on

D. 894 yielded weights I = 1, B = 1, D = 1.003, and

X = 1.002. Table 2 shows a breakdown of performance by

aligned region for each score.

4. RESULTS

In our experiment, we used the cycles analyzed by [17] as

our “ground truth.” If we define successful retrieval of a

cycle in the ground truth as prediction of a cycle in the

same aligned region, our model achieved precision and re-

call scores of 0.18 and 1.0. (The model predicted a cycle in

every aligned region containing a cycle in the ground truth.)

The cycles recalled from the ground truth, on average, had

length p = 6.4 and alignment score 3.2.

Our choice of ground truth cycles impacted our preci-

sion score and led to many predicted cycles in regions not

analyzed. Viewed as strings of harmonies, these predicted

cycles are difficult to distinguish from cycles in the ground

truth. In particular, our model predicted an RP cycle in

measures 304–329 (aligned region 7) of D. 929 with dimen-

sions o = 8, m = 2, p = 7, and l = 9, which almost exactly

match the dimensions of the ground truth RP cycle in D.

956 (see Table 1). We arrive at the conclusion that either

the ground truth is incomplete, or that other factors affect

theorists’ decisions on what constitutes a cycle.

Our model also labels cycles on a more detailed level

than is often done in music analysis. In practice, theorists

often describe transformations acting on a cluster of chords

with a prominent harmonic identity, rather than a particu-

lar chord with that identity. By contrast, our model always

labels specific chords with transformations. Our evaluation

measure does not penalize this type of over-specification.

Aligned region 5 of D. 956, which received one of two per-

fect alignment scores, illustrates this point. In translating the

analysis in [17] to the ground truth labeling, the first author

selected the second D major chord shown in Figure 7 for

participation in the theoretical cycle based on cadential and

inversional information in the score. Our model selected the

first D major chord instead, but was not penalized by con-

struction of our evaluation method.

Figure 7. Aligned region 5 of D. 956 (mm. 233–250), with

ground truth labels (curved connectors) and predicted labels

(elbow connectors).

While our model predicted a cycle in each aligned re-

gion containing a cycle in the ground truth, misalignments

of varying severity also occurred. The predicted cycles in

aligned region 11 of D. 929, aligned region 2 of D. 959,

and aligned region 2 of D. 894 received increasingly large

evaluation scores. These increasing scores reflect the costs

of identifying an extended cycle, a cycle with the desired

harmonic content but opposite direction, and a cycle with

altogether different harmonic content, respectively.

In order to understand why these cycles posed challenges

to our model, consider Figure 8. Distance from the origin

correlates with the alignment scores of these three cycles.

In addition, there seems to be a direct link between distance

from the x-axis (corresponding to the relative number of

deletions) and poor performance. Tellingly, the three cycles

with the best scores (aligned region 4 of D. 959, aligned

region 5 of D. 956, and aligned region 11 of D. 929) are

located on or near the x-axis, but not particularly near the

y-axis, suggesting that the model is able to handle many in-

serted triads, so long as there are few deletions. The two

remaining cycles in the figure, located furthest from the x-

axis, were more costly to align. Each consists of strictly

T2 transformations, resulting in many deletions. The finite-

state model is not in general well-equipped to reward regu-

larity in patterns, and in this case was not able to recognize

regularity of motion within a cycle.

To view the complete set of musical excerpts and ex-

tracted harmonic analyses, please visit http://www.
jonathanbragg.com/ismir2011.

5. CONCLUSION

This paper presents the essential design and performance

of a finite-state approach to harmonic cycle detection. The

model performed well on the task at hand: with access to

Alignment costs by region 

Results 
•  Precision = 0.18, Recall = 1.0, where successful cycle retrieval is 

prediction of cycle in same aligned region as ground truth 
•  Precision score lowered by “false-positives” (cycles not in ground truth) 
•  Average cycle length 6.4 and alignment score 3.2 
•  Handled cycles with many insertions better than many deletions 

Performance 
•  Good performance with little feature data 
•  Retrieved all cycles in ground truth (some 

with very high accuracy) 
•  “False-positives” are potentially viable 

cycles 
•  Useful to music theorists in current form 
Future work 
•  More harmonic analysis data will enable 

more extensive testing 
•  Generalizable to other music features 

such as rhythm, and patterns other than 
cycles 

Composition of weighted 
finite-state transducers 

Reads and outputs 
“C” with cost 0 

n=16, o=9, m=2 


